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Abstract
The three-algebras used by Bagger and Lambert in N = 6 theories of ABJM
type are in one-to-one correspondence with a certain type of Lie superalgebras.
We show that the description of three-algebras as generalized Jordan triple
systems naturally leads to this correspondence. Furthermore, we show that
simple three-algebras correspond to simple Lie superalgebras, and vice versa.
This gives a classification of simple three-algebras from the well-known
classification of simple Lie superalgebras.

PACS numbers: 02.10.De, 02.10.Hh, 11.15.Yc, 11.25.−w

1. Introduction

Superconformal Chern–Simons theories in three dimensions [1] have recently attracted much
interest. In particular two different approaches have appeared in the literature, based on the so-
called three-algebras and Lie superalgebras, respectively. In this paper, we will connect these
two algebraic structures to each other using a third one, generalized Jordan triple systems.

Bagger and Lambert proposed a model for multiple M2-branes with N = 8 supersymmetry
based on an algebraic structure called three-algebra [2–4]. The closure of the supersymmetry
algebra was first shown by Gustavsson [5] using a different (but equivalent [4]) algebraic
approach. It was later proven [6, 7] that there is only one such simple three-algebra, leading
to an SO(4) gauge symmetry. Bagger and Lambert subsequently generalized their model to
one with N = 6 supersymmetry, based on a new, more general, notion of three-algebras [8].
It was shown that an infinite class of such three-algebras, parameterized by an integer n � 2,
gives the N = 6 theories of Aharony, Bergman, Jafferis and Maldacena (ABJM) with gauge
groups SU(n) × SU(n) [9–11]. For n = 2, the supersymmetry enhances from N = 6 to
N = 8, and the ABJM theory coincides with the original Bagger–Lambert–Gustavsson theory,
in accordance with the isomorphism SO(4) = SU(2) × SU(2). Schnabl and Tachikawa have
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classified all N = 6 theories that can be obtained by such an enhancement from theories with
a smaller amount of supersymmetry [12].

Three-dimensional conformal Chern–Simons theories with N = 4 supersymmetry were
studied by Witten and Gaiotto in relation to Janus configurations of four-dimensional N = 4
super Yang–Mills theory [13]. They showed that these novel theories can be classified
in terms of Lie superalgebras. Hosomichi et al extended the theories by Gaiotto and
Witten by additional twisted hypermultiplets [14]. In this way, they obtained the ABJM
theory with U(m) × U(n) gauge symmetry as corresponding to the Lie supergroup U(m|n)

[15]. The supersymmetry was thus enhanced from N = 4 to N = 6 in this case. Such
an enhancement was shown also for another theory, corresponding to the Lie supergroup
OSp(2|2n).

Generalized Jordan triple systems are algebraic structures that on the one hand include
three-algebras as special cases, and on the other hand have a well-studied connection to Lie
algebras [16]. Their relevance for the ABJM theory was first pointed out in [17], where it
was shown that instead of a three-algebra, the theory can equally well be formulated in terms
of the associated Lie algebra. It was also shown that the associated Lie algebra is infinite-
dimensional, but not of Kac–Moody type (thus it should not be confused with the Lie algebra
of the gauge group).

The main observation in the present paper is that the construction by Kantor [16] of the
associated Lie algebra in a simple way can be modified to the construction of an associated
Lie superalgebra, without (unlike other methods to construct Lie superalgebras from triple
systems [18–21]) generalizing the definition of the triple system itself. We will show that
when the generalized Jordan triple system is a three-algebra, the associated Lie superalgebra
is finite-dimensional and 3-graded (with respect to a Z-grading consistent with the usual Z2-
grading). Conversely, any 3-graded Lie superalgebra gives rise to a generalized Jordan triple
system which under certain conditions is a three-algebra. This naturally leads to a one-to-one
correspondence between three-algebras and this type of Lie superalgebras that we will describe
in detail.

The correspondence between three-algebras and Lie superalgebras has also been studied
by Figueroa-O’Farrill et al [22] in the context of the more general Cherkis–Sämann three-
algebras [23]. This description does not involve generalized Jordan triple systems, but is a
special case of a general construction by Faulkner [24]. One advantage of our method is that it
enables us to refine the result: we will show that simple three-algebras correspond to simple Lie
superalgebras and vice versa. (However, this can be shown also with the method in [22]. See
the note added below.) The simple Lie superalgebras that appear have been classified by Kac
[25, 26] as C(n+1) and A(m, n). Thus we arrive at a classification of the simple three-algebras
defined by Bagger and Lambert in [8]. In particular, the uniqueness of the three-algebra in
[2, 3] is from this point of view just a consequence of the well-known classification by Kac of
simple Lie superalgebras.

The paper is organized as follows. In section 2, we give our definition of a three-algebra
(which is the same as in [8]) and show that it is a special case of a generalized Jordan
triple system. We review how an arbitrary generalized Jordan triple system gives rise to
an associated graded Lie algebra. Then we show how this construction can be modified to
give a Lie superalgebra instead of a Lie algebra. This leads to theorem 2.1, which says that
there is a one-to-one correspondence between simple three-algebras and a certain type of
simple Lie superalgebras. In section 3, we go in the opposite direction: we start with the Lie
superalgebras C(n+1) and A(m, n), and describe how the corresponding triple systems can be
obtained. Section 4 contains our conclusions, and the proof of the theorem is completed in the
appendix.
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2. Three-algebras and triple systems

The original definition of a three-algebra given by Bagger and Lambert [3] has subsequently
been generalized by many authors, among them Bagger and Lambert themselves [8]. We will
in this paper use the two definitions in [3] and [8], but in order to distinguish between them,
we will talk about ‘N = 6 three-algebras’ and ‘N = 8 three-algebras’, respectively. When we
only say ‘three-algebra’ we mean an ‘N = 6 three-algebra’, since we are mainly interested in
this more general case.

2.1. Basic definitions

An N = 6 three-algebra is a finite-dimensional complex vector space V with a triple product
f : V × V × V → V and an ‘inner product’ h : V × V → C, such that

• the triple product (xyz) ≡ f (x, y, z) is linear in x and z but antilinear in y:

α(xyz) = ((αx)yz) = (x(α∗y)z) = (xy(αz)) (2.1)

for any complex number α (where ∗ is the complex conjugate);
• the triple product satisfies the identities

(uv(xyz)) − (xy(uvz)) = ((uvx)yz) − (x(vuy)z), (2.2)

(xyz) = −(zyx); (2.3)

• the inner product 〈x|y〉 ≡ h(x, y) is linear in x and antilinear in y;
• the inner product satisfies the identities

〈w|(xyz)〉 = 〈y|(zwx)〉 = 〈(wzy)|x〉 = 〈(yxw)|z〉, (2.4)

〈x|y〉 = 〈y|x〉∗; (2.5)

• the inner product is positive definite.

An N = 8 three-algebra is an N = 6 three-algebra V with a conjugation C (an antilinear
involution) such that the triple product satisfies (xC(y)z) = −(yC(x)z) and the inner product
h is real. This implies that the triple product is totally antisymmetric and that the inner product
is symmetric. Then the identity (2.2) takes the form of a Leibniz rule,

(uv(xyz)) = ((uvx)yz) + (x(uvy)z) + (xy(uvz)). (2.6)

In this form, it is often called the fundamental identity. Moreover, for an N = 8 three-algebra,
(2.4) expresses an invariance of the inner product,

〈(xyw)|z〉 + 〈w|(xyz)〉 = 0. (2.7)

Let V be a N = 6 three-algebra, and let Ta be an orthonormal basis of V, for
a = 1, 2, . . . , dim V . In analogy with Lie algebras, we introduce structure constants f a

b
c
d

for V, which specify the triple product by

(T aT bT c) = f a
b
c
dT

d . (2.8)

We will see that it is natural to put the second index downstairs. This is related to the fact that
the triple product is not linear but antilinear in the second argument. The identities (2.2)–(2.4)
can now be written as

f a
b
c
df

e
f

d
g − f e

f
c
df

a
b
d
g = f e

f
a
df

d
b
c
g − (

f f
e
b
d

)∗
f a

d
c
g, (2.9)
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f a
b
c
d = −f c

b
a
d, (2.10)

(
f a

b
c
d

)∗ = (
f c

d
a
b

)∗ = f b
a
d
c = f d

c
b
a. (2.11)

This means that f is antisymmetric not only in the upper pair of indices, but also in the lower
pair. In [17], the identity (2.11) was used to rewrite (2.9) as

f a
g

[b
df

c]
e
g
f = f b

g
c

[ef
a
f ]

g
d . (2.12)

We follow the notation in [17], which means that we put the indices of f in a different order
compared to Bagger and Lambert [8]:

(
f a

b
c
d

)
NP = (

f acb̄
d

)
BL. (2.13)

The identities (2.9) and (2.11) should be compared to (2) and (4), respectively, in [8].
A difference compared to [17] is that f was linear in all three arguments, and also in the

second argument. But as well as f and h given here, we can always consider the triple product
f̃ and the inner product h̃ in V, given by

f̃ (x, y, z) = f (x, C(y), z), h̃(x, y) = h(x, C(y)) (2.14)

where C is a conjugation. Thus f̃ and h̃ are linear in all arguments, and we can consider
the N = 6 three-algebra V as a special kind of a generalized Jordan triple system [16]. By
definition, this is a vector space with a trilinear triple product that satisfies the identity (2.2).

A weak ideal of a generalized Jordan triple system V is a subspace W such that
(V V W) ⊆ W and (WV V ) ⊆ W . For an N = 6 three-algebra, these two conditions are
equivalent, because of the antisymmetry of the triple product. If in addition (V WV ) ⊆ W,

then W is called an ideal of V. Thus any ideal is a weak ideal. But for N = 6 three-algebras
also the converse is true, as we will show in the appendix.

The triple system V is simple if the only ideals of V are 0 and V itself. If it is not simple,
then we can ‘make it simple’ by factoring out the maximal ideal.

2.2. The associated graded Lie algebra

We will now describe how a generalized Jordan triple system V gives rise to a graded Lie
algebra [16] in the special case when V is an N = 6 three-algebra. This was already done in
[17], but the description here will be more detailed. Also in the general case, our approach is
somewhat different from the original one by Kantor (but equivalent).

Any vector space V gives rise to a graded Lie algebra

Ũ = Ũ−1 ⊕ Ũ0 ⊕ Ũ1 ⊕ Ũ2 ⊕ · · ·
= Ũ−1 ⊕ Ũ0 ⊕ Ũ+, (2.15)

which is the direct sum of subspaces Ũk for all integers k, such that [Ũi, Ũj ] ⊆ Ũi+j , and
Ũk = 0 for k � −2 [29]. The subspaces Ũk for k � −1 are defined recursively, starting with
Ũ−1 = V . For each k � 0, the subspace Ũk is then defined as the vector space of all linear
maps V → Ũk−1. Thus Ũ0 = End V , and Ũ1 consists of linear maps V → End V . The Lie
bracket is defined recursively by

[a, b] = (ad a) ◦ b − (ad b) ◦ a, (2.16)

starting from [u, v] = 0 for u, v ∈ Ũ−1. Here any element u in Ũ−1 = V should be considered
as a constant map V → V , given by u(v) = u for all v ∈ V . The Jacobi identity can be shown
by induction.
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Suppose now that V is an N = 6 three-algebra with an orthonormal basis Ta and structure
constants f a

b
c
d . Define the elements Sa

b ∈ Ũ0 and T̄a ∈ Ũ1 by

Sa
b: V → Ũ−1 = V, Sa

b(T
c) = f a

b
c
dT

d,

T̄a: V → Ũ0, T̄a(T
b) = Sb

a.
(2.17)

Set U−1 = Ũ−1 = V and let U0 and U1 be the subspaces of Ũ0 and Ũ1 spanned by all
elements Sa

b and T̄a , respectively. Furthermore, let U+ = U1 ⊕ U2 ⊕ · · · be the subalgebra of
Ũ+ = Ũ1 ⊕ Ũ2 ⊕ · · · generated by U1 (with grading inherited from Ũ+).

Since the inner product in an N = 6 three-algebra is positive definite and thus non-
degenerate, it follows from (2.4) that if (xuy) = (xvy) for all x and y, then u = v. This means
that U1 is isomorphic to U−1. The map

τ : T̄a �→ T a (2.18)

between the bases of U1 and U−1 is one-to-one and can be extended by linearity to an
isomorphism between the vector spaces U1 and U−1. However, here we choose to extend it
by antilinearity to an anti-isomorphism τ : U+ → U−, where, for each k � 2, we introduce a
vector space U−k isomorphic to Uk, and let U− be the direct sum U− = U−1 ⊕ U−2 ⊕ · · · of
all these vector spaces. Furthermore, we can define a Lie algebra structure on U− by

[τ(a), τ (b)] ≡ τ([a, b]). (2.19)

Then τ extends to a Lie algebra anti-isomorphism from U+ to U−. These two isomorphic Lie
algebras are generated by U1 and U−1, respectively. We can define a Lie algebra structure on
the direct sum

U = · · · ⊕ U−2 ⊕ U−1 ⊕ U0 ⊕ U1 ⊕ U2 ⊕ · · ·
= U− ⊕ U0 ⊕ U+ (2.20)

by combining the Lie algebra structures on the subspaces U− and U−1 + U0 + U+. It follows
by construction that the commutation relations involving U±1 and U0 are

[
Sa

b, T
c
] = f a

b
c
dT

d,
[
Sa

b, T̄d

] = −f a
b
c
d T̄c,

[T̄b, T
a] = Sa

b,
[
Sa

b, S
c
d

] = f a
b
c
eS

e
d − f a

b
e
dS

c
e.

(2.21)

All other commutation relations then follow from (2.21) by the Jacobi identity and the fact
that U is generated by Ta and T̄a . It follows from (2.21) that τ can be extended to a conjugation
on U by the inverse of (2.18),

τ : T a �→ T̄a. (2.22)

This conjugation acts on U0 in the following way,

Sa
b = [T̄b, T

a] �→ [T b, T̄a] = −[T̄a, T
b] = −Sb

a. (2.23)

All elements � in U0 that are invariant under this conjugation constitute a real form of the
complex Lie algebra U0. If we write � = �a

bSa
b, this means

(
�a

b
)∗ = −�b

a . It also
follows from (2.2) that they act as derivations on V:

�((xyz)) = (�(x)yz) + (x�(y)z) + (xy�(z)). (2.24)

In [17], we studied the properties of the graded Lie algebra U associated with a three-algebra
V. We found that it is infinite dimensional, but not of Kac–Moody type. Here we will instead
modify the associated Lie algebra to a Lie superalgebra.
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2.3. The associated graded Lie superalgebra

In the same way as V gives rise to a graded Lie algebra U, it also gives rise to a graded
Lie superalgebra U . We recall that a Lie superalgebra [25, 26] is a Z2-graded algebra
G = G(0) ⊕ G(1) with a Lie superbracket such that

[[a, b]] = −(−1)pq [[b, a]] ∈ G(p+q) (2.25)

if a ∈ G(p) and b ∈ G(q). We say that p and q are the degrees of a and b, respectively. The
degrees should be considered as elements in the field Z2 = {0, 1} so that 1 + 1 = 0. If
pq = 0, we write [[a, b]] = [a, b], and if pq = 1, we write [[a, b]] = {a, b}. Furthermore the
superbracket is required to satisfy the Jacobi superidentity

(−1)pr [[[[a, b]], c]] + (−1)qp[[[[b, c]], a]] + (−1)rq[[[[c, a]], b]] = 0, (2.26)

where p, q, r are the degrees of a, b, c, respectively. For more information about Lie
superalgebras, see for example [30].

A Lie superalgebra is already a Z2-graded algebra, but when we talk about graded algebras
here, we refer to Z-gradings. In particular, when we talk about a graded Lie superalgebra

G = · · · ⊕ G−1 ⊕ G0 ⊕ G1 ⊕ · · · , (2.27)

we refer to a Z-grading that is consistent with the Z2-grading. This means that G(0) is the sum
of all Gk for k even, while G(1) is the sum of all Gk for k odd.

For any vector space V, we can now define a graded Lie superalgebra Ũ as the same
vector space as Ũ , defined in the preceding subsection. Thus Ũ is a direct sum of subspaces
Ũ k = Ũk for k � −1. We equip Ũ with a Lie superalgebra structure by modifying the
recursively defined Lie bracket (2.16) to

[[a, b]] = (ad a) ◦ b − (−1)pq(ad b) ◦ a, (2.28)

where p and q are the degrees of a and b, respectively. The Jacobi superidentity can then be
shown by induction.

If V is a generalized Jordan triple system, we set U−1 = Ũ−1 = V and let U 0 and U 1

be the subspaces of Ũ 0 and Ũ 1 spanned by all elements Sa
b and T̄a , respectively, in analogy

with the construction of the Lie algebra U. Thus U±1 = U±1 and U 0 = U0. But when we
define U+ as the subalgebra of Ũ+ = Ũ 1 ⊕ Ũ 2 ⊕ · · · generated by U 1, and let V be an
N = 6 three-algebra, a difference arises compared to U+, as we will see now. The subspace
U 2 = {U 1,U 1} is spanned by elements {T̄a, T̄b} which are maps from V to U 1. It follows
from (2.28) that they act as

{T̄a, T̄b}(T c) = [T̄a, T̄b(T
c)] + [T̄b, T̄a(T

c)]

= [
Ta, S

c
b

]
+

[
Tb, S

c
a

]

= f c
b
d
aT̄d + f c

a
d
bT̄d , (2.29)

and this is zero for an N = 6 three-algebra. Since U+ is generated by U 1, this means that
U+ = U 1, and the Lie superalgebra is in fact 3-graded,

U = U−1 ⊕ U 0 ⊕ U 1. (2.30)

We note that the same happens for the Lie algebra associated with a Jordan triple system,
which is a generalized Jordan triple system such that (xyz) = (zyx). It follows from this
symmetry of the triple product that the subspaces U±2 vanish, in the same way as U±2 do for

6
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an N = 6 three-algebra. The complete set of commutation relations in U is then given by
[[
Sa

b, T
c
]] = [

Sa
b, T

c
] = f a

b
c
dT

d,
[[
Sa

b, T̄d

]] = [
Sa

b, T̄d

] = −f a
b
c
d T̄c,

[[T̄b, T
a]] = {T̄b, T

a} = Sa
b,

[[
Sa

b, S
c
d

]] = [
Sa

b, S
c
d

] = f a
b
c
eS

e
d − f a

b
e
dS

c
e.

(2.31)

Next we want to extend the anti-isomorphism

τ : U 1 → U−1, T̄a �→ T a (2.32)

to the whole of U in a way such that τ
(
Sa

b

) = −Sb
a as before. But then we cannot extend it

by its inverse as we did for the Lie algebra U. Instead we have to take

τ : U−1 → U 1, T a �→ −T̄a. (2.33)

Then we get

Sa
b = {T̄b, T

a} �→ −{T b, T̄a} = −{T̄a, T
b} = −Sb

a. (2.34)

The resulting anti-automorphism satisfies

[τ(a), τ (b)] = τ([a, b]), τ 2(c) = (−1)k(c) (2.35)

for all a, b ∈ U and c ∈ U k . We call any such anti-automorphism τ on a graded Lie
superalgebra (with consistent grading)

G = · · · ⊕ G−1 ⊕ G0 ⊕ G1 ⊕ · · · , (2.36)

such that τ(Gk) = G−k for all integers k and (2.35) holds for all c ∈ Gk , a graded
superconjugation.

Before stating the main result of this paper, theorem 2.1 below, we need one more
definition. A bilinear form κ on a Lie superalgebra G = G(0) ⊕ G(1) is said to be consistent
and supersymmetric if

κ(a, b) = 1
2 ((−1)p + (−1)q)κ(b, a),

for any x ∈ G(p) and y ∈ G(q) (where p, q = 0, 1). If it furthermore is invariant,

κ([[a, b]], c) = κ(a, [[b, c]]), (2.37)

for any a, b, c ∈ G, then we call it an inner product.

Theorem 2.1. There is a one-to-one correspondence between simple N = 6 three-
algebras V and simple 3-graded Lie superalgebras U with an inner product κ and a graded
superconjugation τ such that

κ(a, τ (b)) = κ(b, τ (a))∗, κ(a, τ (a)) > 0, (2.38)

for all a, b ∈ U .

Proof. We have already described how L(V ) ≡ U is defined from V. The inner product κ

and the graded superconjugation τ are then defined by

τ(T a) = −T̄a, τ (T̄a) = T a, τ
(
Sa

b

) = −Sb
a,

κ(T a, T̄b) = −κ(T̄b, T
a) = δa

b, κ
(
Sa

b, S
c
d

) = f a
b
c
d . (2.39)

It is straightforward to show that they satisfy the requirements in the theorem.
Conversely, start with the 3-graded Lie superalgebra U . Then we take U−1 to be the

N = 6 three-algebra K(U ) ≡ V with the triple product

(xyz) = [[[[x, τ (y)]], z]] = [{x, τ (y)}, z] (2.40)

7
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and the inner product

〈x|y〉 = κ(x, τ (y)). (2.41)

Again, it is straightforward to show that the definition of an N = 6 three-algebra is satisfied.
It is also easy to see that the map L is invertible: K(L(V )) = V for any N = 6 three-
algebra V.

To prove that L(K(U )) = U for any 3-graded Lie superalgebra U that satisfies the
requirements in the theorem, there are two non-trivial conditions that we have to show. First,
that {U−1,U 1} = U 0 and secondly, that c = 0 whenever c ∈ U 0 and [c, x] = 0 for all
x ∈ U−1. We note that the subspace

U−1 + {U−1,U 1} + U 1 (2.42)

is an ideal of U , and since U is simple, we must have {U−1,U 1} = U 0. Then also the second
condition follows, since otherwise all such elements c would form an ideal.

It remains to show that L(V ) is a simple Lie superalgebra if and only if V is a simple
N = 6 three-algebra. We will show this in the appendix. �

It follows that a classification of all simple three-algebras is equivalent to the classification
of all simple Lie superalgebras that satisfy the conditions in the theorem. The simple 3-graded
Lie superalgebras have been classified by Kac [25, 26], and they are called classical Lie
superalgebras of type I. They are denoted as A(0, n), A(m, n), C(n + 1) and P(n + 1) for
all integers m, n � 1. Among these, P(n + 1) is a strange Lie superalgebra, which in
particular means that dim U−1 �= dim U 1 in the 3-grading P(n) = U−1 + U 0 + U 1. Thus
P(n+1) does not admit a graded superconjugation. For the remaining basic Lie superalgebras
A(0, n), A(m, n) and C(n+1), there is a unique 3-grading up to automorphisms. Furthermore,
there is an inner product κ and a graded superconjugation τ such that the requirements are
satisfied.

It is a general result that an inner product on a simple Lie superalgebra is unique up
to an overall constant, so we only have to show that there is a superconjugation τ that is
compatible with this inner product. The inner product reduces to the ordinary Killing form on
the subalgebra U 0 (which is a semisimple Lie algebra), and the superconjugation τ reduces
to an ordinary conjugation on U 0. This means that it defines a real form of the complex Lie
algebra U 0, consisting of all elements x + τ(x), where x ∈ U 0. Then the requirement that κ

be positive definite on this real Lie algebra defines τ uniquely on U 0, up to automorphisms.
In the next section, we will see that there is even a way to extend τ to the U±1 subspaces such
that the conditions (2.38) are satisfied on the full Lie superalgebra U .

3. From Lie superalgebras back to three-algebras

We will now change perspective and focus on the simple Lie superalgebras C(n + 1) and
A(m, n) that satisfy the conditions in the theorem. Physicists are perhaps more familiar with
the notation sp(2|2n, C), su(m + 1|n + 1, C) and psu(n + 1|n + 1, C) for C(n + 1), A(m, n)

and A(n, n), respectively, where m �= n. We will review how these Lie superalgebras can
be constructed from their Cartan matrices or Dynkin diagrams. The Cartan matrices and
Dynkin diagrams that we use are always the distinguished ones. For more details, we refer to
[25, 26, 30].

We will define an inner product κ and superconjugation τ on the Lie superalgebras C(n+1)

and A(m, n) that satisfy the conditions (2.38), whereupon the construction of the associated
N = 6 three-algebra follows by (2.40) and (2.41). Repeated indices should not be summed
over in this section.
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3.1. The Lie superalgebras C(n + 1)

For any integer n � 1, the Lie superalgebra C(n + 1) is given by the entries Aij of the Cartan
matrix

0 1 2 n

0

1

2

n− 2

n− 1

n

0 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −2
0 0 0 · · · 0 −1 2

n (3.1)

or, equivalently, by the Dynkin diagram

0 1 n− 1 n

<

To each row and column in the Cartan matrix, and to each node in the Dynkin diagram, we
associate three Chevalley generators ei, fi, hi where i = 0, 1, . . . , n according to the labelling
above.

The Lie superalgebra C(n + 1) is now generated by the Chevalley elements modulo the
Chevalley relations

[[ep, fq ]] = [ep, fq] = δpqhq, [[hi, ej ]] = [hi, ej ] = Aij ej ,

[[e0, f0]] = {e0, f0} = h0 [[hi, fj ]] = [hi, fj ] = −Aijfj , (3.2)

for (p, q) �= (0, 0), and, for i �= j , the Serre relations

(ad ei)
1+|Aij |(ej ) = (ad fi)

1+|Aij |(fj ) = 0. (3.3)

The subspace U−1 in the 3-grading C(n + 1) = U−1 ⊕ U 0 ⊕ U 1 is spanned by all multiple
commutators where the Chevalley generator e0, corresponding to the ‘grey’ node above,
appears exactly once. Likewise, U 1 is spanned by all multiple commutators where f 0 appears
exactly once. The subalgebra U 0 is the direct sum of a one-dimensional Lie algebra and the
simple complex Lie algebra Cn. The Dynkin diagram of Cn is obtained by deleting the grey
node, and its compact real form is sp(2n).

Now we define the inner product κ and the superconjugation τ for the Chevalley
generators. For the inner product, we have

κ(hn−1, hn) = 1, κ(en, fn) = − 1
2 (3.4)

and otherwise

κ(hi, hj ) = −Aij , κ(ei, fj ) = −δij . (3.5)

The superconjugation is given by

τ(e0) = −f0, τ (ep) = −fp,

τ (f0) = e0, τ (fp) = −ep,

τ (h0) = −h0, τ (hp) = −hp,

(3.6)

for p > 0. The inner product of two arbitrary elements then follows by invariance, and the
action of the superconjugation on an arbitary element follows by the homomorphism property.
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3.2. The Lie superalgebras A(m, n)

For any integers m, n � 0, (m, n) �= (0, 0), the Lie superalgebra A(m, n) is given by the
entries Aij of the Cartan matrix

−m −2 −1 0 1 2 n

−m

−m + 1

−m + 2

−2

−1

0

−1

−2

n− 2

n− 1

n

−2 1 0 · · · 0 0 0 0 0 · · · 0 0 0
1 −2 1 · · · 0 0 0 0 0 · · · 0 0 0
0 1 −2 · · · 0 0 0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 · · · −2 1 0 0 0 · · · 0 0 0
0 0 0 · · · 1 −2 1 0 0 · · · 0 0 0
0 0 0 · · · 0 1 0 −1 0 · · · 0 0 0
0 0 0 · · · 0 0 −1 2 −1 · · · 0 0 0
0 0 0 · · · 0 0 0 −1 2 · · · 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 0 0 0 · · · 2 −1 0
0 0 0 · · · 0 0 0 0 0 · · · −1 2 −1
0 0 0 · · · 0 0 0 0 0 · · · 0 −1 2

m n

(3.7)

or, equivalently, by the Dynkin diagram

−m −m + 1 −1 0 1 n− 1 n

The Lie superalgebra A(m, n) can now be constructed from its Cartan matrix or its Dynkin
diagram in the same way as C(n + 1) in the preceding subsection, starting from 3(m + n + 1)

Chevalley generators ei, fi, hi , where now i = −m,−m + 1, . . . , n according to the labelling
above. The Lie superalgebra A(m, n) is then generated by these elements modulo the
Chevalley–Serre relations (3.2)–(3.3) and, if m, n > 0, the supplementary relations

0 = (ad e0) ◦ (ad e1) ◦ (ad e0) ◦ (ad e−1)

= (ad e0) ◦ (ad e−1) ◦ (ad e0) ◦ (ad e1)

= (ad f0) ◦ (ad f1) ◦ (ad f0) ◦ (ad f−1)

= (ad f0) ◦ (ad f−1) ◦ (ad f0) ◦ (ad f1). (3.8)

For m = n, we also factor out the one-dimensional ideal spanned by the Cartan element

h−m + 2h−m+1 + · · · + mh−1 + (m + 1)h0 + mh1 + · · · + 2hm−1 + hm. (3.9)

It follows from the Chevalley–Serre relations that A(m, n) is spanned by all elements
eij , fij and hij, defined by

eij = [· · · [ei, ei+1], . . . , ej ],

fij = (−1)j [· · · [fi, fi+1], . . . , fj ],

hij = hi + hi+1 + · · · + hj ,

(3.10)

10
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where −m � i � j � n. As for C(n + 1), the subspaces U−1 and U 1 in the 3-grading
A(m, n) = U−1 ⊕ U 0 ⊕ U 1 are spanned by all multiple commutators where e0 and f 0,
respectively, appear exactly once. If m �= n, then the Lie algebra U 0 is the direct sum of a
one-dimensional subalgebra and the complex semisimple Lie algebra Am ⊕ An. If m = n,
the one-dimensional subalgebra vanishes, since this is then the ideal, spanned by the element
(3.9), that we factored out in the construction of the algebra. The Dynkin diagram of Am ⊕An

is obtained by deleting the grey node above, and its compact real form is su(m+1)⊕su(n+1).
In the basis (3.10), the subspaces U 1 and U−1 are spanned by all elements eik and fjl,

respectively, such that i, j � 0 � k, l. Then we have

[hik, ejl] = (−δij + δkl)ejl,

[hik, fjl] = (δij − δkl)fjl .
(3.11)

If we furthermore assume i < j and k < l, then we get

{eik, fjk} = −ei(j−1),

{ejk, fik} = fi(j−1),

{ejk, fjl} = −f(k+1)l ,

{ejl, fjk} = −e(k+1)l ,

(3.12)

and we also have

{eij , fij } = hij . (3.13)

For (i, j) �= (k, l), the anticommutator {eij , fkl} is instead another element epq or fpq. Using
(3.11)–(3.13), we obtain

[{eik, fjl}, epq ] = δij δlqekp − δklδjpeiq (3.14)

for any i, j � 0 � k, l. Define the inner product κ and the superconjugation τ by

κ(hi, hj ) = −Aij , κ(ei, ej ) = −δij , (3.15)

τ(eq) = fq, τ (e0) = −f0, τ (ep) = −fp,

τ (fq) = eq, τ (f0) = e0, τ (fp) = −ep,

τ (hq) = −hq, τ (h0) = −h0, τ (hp) = −hp,

(3.16)

for (only here) q < 0 < p. This gives

κ(eik, fjl) = −δij δkl, τ (eik) = −fik, τ (fjl) = ejl (3.17)

for i, j � 0 � k, l. It then follows that the vector space U−1 together with the triple product
given for the basis elements by

(eikejlepq) = [{eik, τ (ejl)}, epq ] = δklδjpeiq − δij δlqekp (3.18)

is an N = 6 three-algebra.
To each basis element eij of U−1, we can associate an m × n matrix where the entry in

row i and column j is one, and all the others are zero. Thus we can identify U−1 with the
vector space of all complex m × n matrices. The triple product that follows from (3.18) for
three arbitrary elements is then

(xyz) = xy†z − zy†x. (3.19)

We have thus shown that this example of an N = 6 three-algebra, associated with the Lie
superalgebra A(m, n), is indeed the same as the one in [8], where it was shown to give the
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ABJM theory. Alternatively, one could have shown this using the matrix realization of A(m, n)

as su(m + 1|n + 1, C) or (if m = n) as psu(n + 1|n + 1, C), with (minus) the supertranspose
as the superconjugation τ , and also obtained an analogous description of the three-algebra
associated with C(n + 1) = osp(2|2n, C).

4. Conclusion

In this paper, we have used generalized Jordan triple systems to describe a one-to-one
correspondence between two different algebraic structures: on the one hand, the three-algebras
that have been used in three-dimensional superconformal Chern–Simons theories, and on the
other a kind of 3-graded Lie superalgebras.

As mentioned in the introduction, the correspondence between three-algebras and Lie
superalgebras has also been studied in [22], without using generalized Jordan triple systems.
Theorem 22 in [22] is similar to our theorem 2.1, but there is an important difference. In [22],
the even subspace of the Lie superalgebra is required to act faithfully on the odd subspace in
the adjoint representation, but it is not required to be simple. In this paper, we have refined
the result by showing that simple three-algebras correspond to simple Lie superalgebras and
vice versa.

The simple Lie superalgebras that appear in the one-to-one correspondence are
C(n + 1) and A(m, n). We have only considered N = 6 and N = 8 theories, but
there are also N = 4 and N = 5 theories corresponding to the Lie superalgebras
B(m, n),D(m, n), F (4),G(3),D(2, 1;α) [13–15, 31] (for the embedding tensor approach
see also [32]). These Lie superalgebras do not admit a 3-grading but instead a 5-grading,
with nonzero subspaces U±2. It would be interesting to study the generalized Jordan
triple systems corresponding to such 5-graded Lie superalgebras. Those corresponding
to 5-graded ordinary Lie algebras are called Kantor triple systems [16, 33, 34] and were
suggested in [35] to play a role in the Bagger–Lambert–Gustavsson theory of multiple M2-
branes. In an other possibly related approach, symplectic three-algebras were introduced in
[36].

Going to the other side of the correspondence, the three-algebras that we have
considered here are positive definite, and this fact is essential for some of the results.
Possible generalizations to other signatures would be an interesting subject for further
research.

Our construction of the associated Lie superalgebra is a simple modification of the original
construction by Kantor, which associates a graded Lie algebra to any generalized Jordan triple
system. These Lie algebras are defined by the same Cartan matrices (3.1) and (3.7) as the
corresponding Lie superalgebras, but the anticommutator in the Chevalley relations is replaced
by a commutator. The result is an infinite-dimensional Lie algebra, which is not of Kac–Moody
type [17]. However, the Lie algebra corresponding to A(0, n) is in fact a Borcherds algebra,
which is a kind of generalized Kac–Moody algebra [37]. This would be interesting to explore
further.
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Note added. After the preprint of this paper appeared, it was shown in [27] that the refined result (that simple
three-algebras correspond to simple Lie superalgebras and vice versa) also can be recovered from the construction in
[22]. See also [28].

Appendix. Simple three-algebras and Lie superalgebras

As promised in section 2.3, we will here prove the remaining part of theorem 2.1 that
the 3-graded Lie superalgebra U associated with an N = 6 three-algebra V is simple
if and only if V is simple. First, we need the following result, which we mentioned in
section 2.2.

Lemma A.1. Any weak ideal D of an N = 6 three-algebra V is an ideal.

Proof. Any two elements u, v ∈ V can be decomposed as

u = uD + u⊥, v = vD + v⊥, (A.1)

where uD, vD ∈ D, and

〈u⊥|d〉 = 〈v⊥|d〉 = 0 (A.2)

for all d ∈ D. Suppose that D is not an ideal. Then, for any d ∈ D, there must be elements
u, v ∈ V such that (udv) /∈ D. But since D is a weak ideal,

(uDdvD), (uDdv⊥), (u⊥dvD) ∈ D (A.3)

so this means that (u⊥dv⊥) /∈ D. Using (2.4), we get

〈(u⊥dv⊥)|(u⊥dv⊥)〉 = 〈v⊥|(du⊥(u⊥dv⊥))〉 = 〈v⊥|d ′〉 (A.4)

for some d ′ ∈ D, again since D is a weak ideal. Thus, the inner product with v⊥ is zero.
But on the other hand, (u⊥dv⊥) is a nonzero element and since the inner product is positive
definite, we must have

〈(u⊥dv⊥)|(u⊥dv⊥)〉 > 0. (A.5)

Thus, we get a contradiction, and we conclude that D is an ideal. �

Since also the converse is true, any ideal is a weak ideal, it follows from the lemma that
it is enough to show that U is simple if and only if there are no weak ideals of V (other than 0
and V itself). Furthermore, a weak ideal of V is the same as a subrepresentation of U−1 under
U 0, so in fact we only have to show that U is simple if and only if the representation of U0 on
U−1 is irreducible.

Suppose first that the representation of U0 on U−1 is irreducible, and that there is a
nontrivial ideal C of U. Let c = c−1 + c0 + c1 be a nonzero element in C, where ck ∈ Uk

for k = 0,±1. It follows from the definition of U 0 that it cannot contain a nonzero ideal of
U . Thus, c−1, c1 �= 0 and τ(c1) ∈ U−1 = V . Since the inner product is non-degenerate, it
follows from (2.4) that there must be elements u, v ∈ V such that (uτ(c1)v) �= 0. But

(uτ(c1)v) = [{u, τ(τ (c1))}, v] = −[{u, c1}, v] = −[{u, c}, v], (A.6)

where the last equality follows from the 3-grading. This is an element in U−1, but also in C,
since C is an ideal of the Lie superalgebra. Thus, the intersection of U−1 and C is a nonzero
subrepresentation of U−1 under U0. But then U−1 ⊆ C since the representation of U0 on U−1

is irreducible. In the same way, there must be elements τ(x), τ (y) ∈ U 1 = τ(V ) such that
(τ (x)τ (c−1)τ (y)) �= 0 and we get that U−1 ⊆ C. Since U is generated by U−1 and U 1, we
conclude that U = C, so the only nontrivial ideal of U is U itself. Thus, U is simple.
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Suppose now that U is simple, and let D be a proper and nontrivial ideal of V = U−1, so
that [U 0,D] ⊆ D. Then, the subspace

D + {D,U 1} + [{D,U 1},U 1] (A.7)

is a proper and nontrivial ideal of U , which contradicts the assumption that U is simple. Thus,
there are no such ideals in V, and we conclude that V is simple.
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(arXiv:0804.2662 [hep-th])
[7] Gauntlett J P and Gutowski J B 2008 Constraining maximally supersymmetric membrane actions J. High Energy

Phys. JHEP06(2008)053 (arXiv:0804.3078 [hep-th])
[8] Bagger J and Lambert N 2009 Three-algebras and N = 6 Chern–Simons gauge theories Phys. Rev. D 79 025002

(arXiv:0807.0163 [hep-th])
[9] Aharony O, Bergman O, Jafferis D L and Maldacena J 2008 N = 6 superconformal Chern–Simons-matter

theories, M2-branes and their gravity duals J. High Energy Phys. JHEP10(2008)091 (arXiv:0806.1218 [hep-
th])
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